Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.331
1.
Nat Commun ; 15(1): 3920, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724508

Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.


Biofilms , Biosensing Techniques , Cyclic GMP , Biosensing Techniques/methods , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Signal Transduction , Escherichia coli/metabolism , Escherichia coli/genetics , Second Messenger Systems
2.
Sci Total Environ ; 928: 172408, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38608880

This study investigated the mechanisms of microbial growth and metabolism during biofilm cultivation in the biofilm sequencing batch reactor (BSBR) process for phosphate (P) enrichment. The results showed that the sludge discharge was key to biofilm growth, as it terminated the competition for carbon (C) source between the nascent biofilm and the activated sludge. For the tested reactor, after the sludge discharge on 18 d, P metabolism and C source utilization improved significantly, and the biofilm grew rapidly. The P concentration of the recovery liquid reached up to 157.08 mg/L, which was sufficient for further P recovery via mineralization. Meta-omics methods were used to analyze metabolic pathways and functional genes in microbial growth during biofilm cultivation. It appeared that the sludge discharge activated the key genes of P metabolism and inhibited the key genes of C metabolism, which strengthened the polyphosphate-accumulating metabolism (PAM) as a result. The sludge discharge not only changed the types of polyphosphate-accumulating organisms (PAOs) but also promoted the growth of dominant PAOs. Before the sludge discharge, the necessary metabolic abilities that were spread among different microorganisms gradually concentrated into a small number of PAOs, and after the sludge discharge, they further concentrated into Candidatus_Contendobacter (P3) and Candidatus_Accumulibacter (P17). The messenger molecule C-di-GMP, produced mostly by P3 and P17, facilitated P enrichment by regulating cellular P and C metabolism. The glycogen-accumulating organism (GAO) Candidatus_Competibacter secreted N-Acyl homoserine lactones (AHLs), which stimulated the secretion of protein in extracellular polymeric substances (EPS), thus promoting the adhesion of microorganisms to biofilm and improving P metabolism via EPS-based P adsorption. Under the combined action of the dominant GAOs and PAOs, AHLs and C-di-GMP mediated QS to promote biofilm development and P enrichment. The research provides theoretical support for the cultivation of biofilm and its wider application.


Acyl-Butyrolactones , Biofilms , Cyclic GMP , Cyclic GMP/analogs & derivatives , Phosphates , Waste Disposal, Fluid , Acyl-Butyrolactones/metabolism , Phosphates/metabolism , Cyclic GMP/metabolism , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology
3.
NPJ Biofilms Microbiomes ; 10(1): 38, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575604

Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.


Cyclic GMP/analogs & derivatives , Lipopolysaccharides , Mytilus , Animals , Larva/microbiology , Larva/physiology , Metamorphosis, Biological/genetics , Mytilus/genetics , Mytilus/microbiology , Bacteria
4.
Sci Total Environ ; 927: 172376, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604376

Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.


Bacteria , Biofilms , Cyclic GMP , Bacterial Physiological Phenomena , Cold Temperature , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Extracellular Polymeric Substance Matrix , Wastewater/microbiology
5.
Mol Microbiol ; 121(5): 1039-1062, 2024 May.
Article En | MEDLINE | ID: mdl-38527857

The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here, we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length and G-C content play a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.


Bacterial Proteins , Borrelia burgdorferi , Cyclic GMP , RNA-Binding Proteins , Borrelia burgdorferi/metabolism , Borrelia burgdorferi/genetics , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Binding , Protein Domains , DNA, Bacterial/metabolism , DNA, Bacterial/genetics
6.
Virulence ; 15(1): 2331265, 2024 Dec.
Article En | MEDLINE | ID: mdl-38532247

Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.


Bacterial Proteins , Cyclic GMP/analogs & derivatives , Proteomics , Animals , Virulence , Bacterial Proteins/genetics , Biofilms , Salmonella/metabolism , Cyclic GMP/analysis , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial
7.
Food Microbiol ; 120: 104482, 2024 Jun.
Article En | MEDLINE | ID: mdl-38431313

Hafnia paralvei, a Gram-negative foodborne pathogen, is found ubiquitously in various aquatic animals and seafoods, which can form biofilm as a dominant virulence factor that contributes to its pathogenesis. However, the biofilm formation mechanism of H. paralvei and its effect on food spoilage has not been fully characterized. Here we show that biofilm formation, is regulated by c-di-GMP which mediated by bcsB, can increase the spoilage ability of H. paralvei. We found that GTP was added exogenously to enhance the synthesis of c-di-GMP, which further promoted biofilm formation. The gene dgcC, one of 11 genes encoding GGDEF domain-containing proteins in H. paralvei, was significantly upregulated with GTP as substrate. The upregulation of dgcC contributes to a significant increase of c-di-GMP and the formation of biofilm. In addition, the overexpression of dgcC induced upregulation of bcsB, a reported effector protein encoding gene, which was further demonstrated that overexpression of bcsB can encourage the synthesis of bacterial cellulose and biofilm formation. The effect of biofilm formation induced by c-di-GMP on spoilage of Yellow River carp (Cyprinus carpio) was evaluated by sensory evaluation, the total viable count, and the total volatile basic nitrogen, which showed that biofilm formation can significantly increase the spoilage ability of H. paralvei on C. carpio. Our findings provide the regulation of c-di-GMP on expression of bcsB, that can contribute to biofilm formation and spoilage ability of H. paralvei, which is favor to understanding the pathogenesis of Hafnia paralvei and its role in food spoilage.


Bacterial Proteins , Carps , Cyclic GMP/analogs & derivatives , Hafnia , Animals , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Gene Expression , Seafood , Biofilms , Guanosine Triphosphate
8.
Nat Commun ; 15(1): 1860, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38424057

Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a bacterial second messenger that modulates various processes including biofilm formation, motility, and host-microbe symbiosis. Numerous studies have conducted comprehensive analysis of c-di-GMP. However, the mechanisms by which certain environmental signals such as iron control intracellular c-di-GMP levels are unclear. Here, we show that iron regulates c-di-GMP levels in Pseudomonas aeruginosa by modulating the interaction between an iron-sensing protein, IsmP, and a diguanylate cyclase, ImcA. Binding of iron to the CHASE4 domain of IsmP inhibits the IsmP-ImcA interaction, which leads to increased c-di-GMP synthesis by ImcA, thus promoting biofilm formation and reducing bacterial motility. Structural characterization of the apo-CHASE4 domain and its binding to iron allows us to pinpoint residues defining its specificity. In addition, the cryo-electron microscopy structure of ImcA in complex with a c-di-GMP analog (GMPCPP) suggests a unique conformation in which the compound binds to the catalytic pockets and to the membrane-proximal side located at the cytoplasm. Thus, our results indicate that a CHASE4 domain directly senses iron and modulates the crosstalk between c-di-GMP metabolic enzymes.


Bacterial Proteins , Cyclic GMP/analogs & derivatives , Escherichia coli Proteins , Inosine Monophosphate/analogs & derivatives , Thionucleotides , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Cryoelectron Microscopy , Escherichia coli Proteins/metabolism , Cyclic GMP/metabolism , Biofilms , Gene Expression Regulation, Bacterial
9.
Redox Biol ; 70: 103053, 2024 Apr.
Article En | MEDLINE | ID: mdl-38340634

Although reactive oxygen species (ROS) are known to have harmful effects in organisms, recent studies have demonstrated expression of ROS synthases at various parts of the organisms and the controlled ROS generation, suggesting possible involvement of ROS signaling in physiological events of individuals. However, physiological roles of ROS in the CNS, including functional roles in higher brain functions or neuronal activity-dependent ROS production, remain to be elucidated. Here, we demonstrated involvement of ROS - 8-NO2-cGMP signaling in motor learning and synaptic plasticity in the cerebellum. In the presence of inhibitors of ROS signal or ROS synthases, cerebellar motor learning was impaired, and the stimulus inducing long-term depression (LTD), cellular basis for the motor learning, failed to induce LTD but induced long-term potentiation (LTP)-like change at cerebellar synapses. Furthermore, ROS was produced by LTD-inducing stimulus in enzyme-dependent manner, and excess administration of the antioxidant vitamin E impaired cerebellar motor learning, suggesting beneficial roles of endogenous ROS in the learning. As a downstream signal, involvement of 8-NO2-cGMP in motor learning and cerebellar LTD were also revealed. These findings indicate that ROS - 8-NO2-cGMP signal is activated by neuronal activity and is essential for cerebellum-dependent motor learning and synaptic plasticity, demonstrating involvement of the signal in physiological function of brain systems.


Cyclic GMP/analogs & derivatives , Neuronal Plasticity , Nitrogen Dioxide , Humans , Reactive Oxygen Species/metabolism , Nitrogen Dioxide/metabolism , Neuronal Plasticity/physiology , Cerebellum/metabolism , Memory, Long-Term
10.
Biotechnol J ; 19(2): e2300542, 2024 Feb.
Article En | MEDLINE | ID: mdl-38403404

Bacterial second messenger c-di-GMP upregulation is associated with the transition from planktonic to sessile microbial lifestyle, inhibiting cellular motility, and virulence. However, in-depth elucidation of the cellular processes resulting from c-di-GMP upregulation has not been fully explored. Here, we report the role of upregulated cellular c-di-GMP in promoting planktonic cell growth of Escherichia coli K12 and Pseudomonas aeruginosa PAO1. We found a rapid expansion of cellular growth during initial cellular c-di-GMP upregulation, resulting in a larger planktonic bacterial population. The initial increase in c-di-GMP levels promotes bacterial swarming motility during the growth phase, which is subsequently inhibited by the continuous increase of c-di-GMP, and ultimately facilitates the formation of biofilms. We demonstrated that c-di-GMP upregulation triggers key bacterial genes linked to bacterial growth, swarming motility, and biofilm formation. These genes are mainly controlled by the master regulatory genes csgD and csrA. This study provides us a glimpse of the bacterial behavior of evading potential threats through adapting lifestyle changes via c-di-GMP regulation.


Bacterial Proteins , Cyclic GMP/analogs & derivatives , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Up-Regulation , Biofilms , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
11.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Article En | MEDLINE | ID: mdl-38340793

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Bacterial Proteins , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa , Transcription, Genetic , Type VI Secretion Systems , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Electrophoretic Mobility Shift Assay , Immunoprecipitation , Mutation , Promoter Regions, Genetic , Protein Binding , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Quorum Sensing , Second Messenger Systems , Two-Hybrid System Techniques , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism
12.
J Inorg Biochem ; 252: 112482, 2024 03.
Article En | MEDLINE | ID: mdl-38218138

Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.


Cyclic GMP/analogs & derivatives , Escherichia coli Proteins , Shewanella , Globins/chemistry , Oxygen/metabolism , Escherichia coli Proteins/chemistry , Phosphorus-Oxygen Lyases/chemistry , Biofilms , Heme/chemistry , Bacterial Proteins/chemistry
13.
Nat Commun ; 15(1): 695, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38267428

Cyclic di-GMP (c-di-GMP) is a second messenger that promotes biofilm formation in several bacterial species, but the mechanisms are often unclear. Here, we report that c-di-GMP promotes biofilm formation in mycobacteria in a manner dependent on the nucleoid-associated protein Lsr2. We show that c-di-GMP specifically binds to Lsr2 at a ratio of 1:1. Lsr2 upregulates the expression of HadD, a (3R)-hydroxyacyl-ACP dehydratase, thus promoting the synthesis of keto-mycolic acid and biofilm formation. Thus, Lsr2 acts as a c-di-GMP receptor that links the second messenger's function to lipid synthesis and biofilm formation in mycobacteria.


Cyclic GMP/analogs & derivatives , Mycobacterium , Mycolic Acids , Adipogenesis , Keto Acids , Biofilms
14.
Mol Biol Rep ; 51(1): 140, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236447

BACKGROUND: Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (PKG-I), a serine/threonine kinase, is important in tumor development. The present study determines that the cGMP/PKG I pathway is essential for promoting cell proliferation and survival in human ovarian cancer cells, whereas cGMP analog has been shown to lead to growth inhibition and apoptosis of various cancer cells. The role of cGMP/PKG I pathway in epithelial ovarian cancer (EOC), therefore, remains controversial. We investigated the effect of cGMP/PKG I pathway and the underlying mechanism in EOC. METHODS AND RESULTS: The results showed that exogenous 8-Bromoguanosine-3', 5'-cyclic monophosphate (8-Br-cGMP) (cGMP analog) could antagonize the effects by EGF, including suppressing proliferation, invasion and migration of EOC cells. In vivo, 8-Br-cGMP hampered the growth of the xenograft tumor. Additionally, the expressions of epidermal growth factor receptor (EGFR), matrix metallopeptidase 9 (MMP9), proliferating cell nuclear antigen and Ki67 in xenograft tumor were decreased after 8-Br-cGMP intervention. Further research demonstrated that 8-Br-cGMP decreased the phosphorylation of EGFR (Y992) and downstream proteins phospholipase Cγ1 (PLC γ1) (Y783), calmodulin kinase II (T286) and inhibited cytoplasmic Ca2+ release as well as PKC transferring to cell membrane. It's worth noting that the inhibition was 8-Br-cGMP dose-dependent and 8-Br-cGMP showed similar inhibitory effect on EOC cells compared with U-73122, a specific inhibitor of PLC γ1. CONCLUSIONS: The activation of endogenous PKG I by addition of exogenous 8-Br-cGMP could inhibit EOC development probably via EGFR/PLCγ1 signaling pathway. 8-Br-cGMP/PKG I provide a new insight and strategy for EOC treatment.


Cyclic GMP/analogs & derivatives , Ovarian Neoplasms , Thionucleotides , Humans , Female , Carcinoma, Ovarian Epithelial , Phospholipase C gamma , Ovarian Neoplasms/drug therapy , ErbB Receptors
15.
Mol Plant Microbe Interact ; 37(4): 357-369, 2024 Apr.
Article En | MEDLINE | ID: mdl-38105438

Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Bacterial Proteins , Cyclic GMP/analogs & derivatives , Fimbriae, Bacterial , Gene Expression Regulation, Bacterial , Plant Diseases , Promoter Regions, Genetic , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/genetics , Xanthomonas/metabolism , Xanthomonas/physiology , Virulence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Promoter Regions, Genetic/genetics , Plant Diseases/microbiology , Quorum Sensing , Transcription Factors/metabolism , Transcription Factors/genetics , Oryza/microbiology , Cyclic GMP/metabolism
16.
Biomed Environ Sci ; 35(9): 821-829, 2022 Sep 20.
Article En | MEDLINE | ID: mdl-36189997

Objective: This study aimed to investigate the regulation of histone-like nucleoid structuring protein (H-NS) on biofilm formation and cyclic diguanylate (c-di-GMP) synthesis in Vibrio parahaemolyticus RIMD2210633. Methods: Regulatory mechanisms were analyzed by the combined utilization of crystal violet staining, quantification of c-di-GMP, quantitative real-time polymerase chain reaction, LacZ fusion, and electrophoretic-mobility shift assay. Results: The deletion of hns enhanced the biofilm formation and intracellular c-di-GMP levels in V. parahaemolyticus RIMD2210633. H-NS can bind the upstream promoter-proximal DNA regions of scrA, scrG, VP0117, VPA0198, VPA1176, VP0699, and VP2979 to repress their transcription. These genes encode a group of proteins with GGDEF and/or EAL domains associated with c-di-GMP metabolism. Conclusion: One of the mechanisms by which H-NS represses the biofilm formation by V. parahaemolyticus RIMD2210633 may be via repression of the production of intracellular c-di-GMP.


Vibrio parahaemolyticus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Gentian Violet , Histones/genetics , Histones/metabolism , Vibrio parahaemolyticus/genetics
17.
Nat Commun ; 13(1): 5834, 2022 10 03.
Article En | MEDLINE | ID: mdl-36192422

Streptomyces are our principal source of antibiotics, which they generate concomitant with a complex developmental transition from vegetative hyphae to spores. c-di-GMP acts as a linchpin in this transition by binding and regulating the key developmental regulators, BldD and WhiG. Here we show that c-di-GMP also binds the glycogen-debranching-enzyme, GlgX, uncovering a direct link between c-di-GMP and glycogen metabolism in bacteria. Further, we show c-di-GMP binding is required for GlgX activity. We describe structures of apo and c-di-GMP-bound GlgX and, strikingly, their comparison shows c-di-GMP induces long-range conformational changes, reorganizing the catalytic pocket to an active state. Glycogen is an important glucose storage compound that enables animals to cope with starvation and stress. Our in vivo studies reveal the important biological role of GlgX in Streptomyces glucose availability control. Overall, we identify a function of c-di-GMP in controlling energy storage metabolism in bacteria, which is widespread in Actinobacteria.


Gene Expression Regulation, Bacterial , Streptomyces , Allosteric Regulation , Animals , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Glucose/metabolism , Glycogen/metabolism , Second Messenger Systems , Streptomyces/metabolism
18.
Theranostics ; 12(15): 6723-6739, 2022.
Article En | MEDLINE | ID: mdl-36185614

Rationale: Cyclic dinucleotides (cDNs) are a promising class of immunotherapeutic agent targeting stimulator of interferon genes (STING). However, enzymatic instability and transmembrane barriers limit the extensive clinical application of cDNs. Thus, a novel delivery system, composed of a neutral cytidinyl lipid DNCA and a cationic lipid CLD (Mix) that interacts with cDNs via H-bonding, pi-stacking and electrostatic interaction, is developed and optimized to overcome the above issues. Methods: The optimal composition of Mix for cDNs encapsulation was explored with RAW-Lucia ISG cells. The physicochemical properties of resulted nanoparticles were characterized. To validate the anti-tumor immunity of cDNs/Mix both in vitro and in vivo, immunogenic cell death (ICD) related markers and tumor inhibition efficacy were evaluated in cancer cells and tumor models, respectively. The mechanism by which cdG/Mix exerted the antitumor effects was explored by flow cytometric analysis and in vivo depletion. Results: Based on our developed and optimized delivery system, neutral cytidinyl lipid DNCA/cationic lipid CLD (Mix), cdG (500 nM in vitro, 1-10 µg in vivo)/Mix not only more potently stimulated production of IFNß and related cytokines including CXCL9 and CXCL10, promoted ICD, led to NK and CD8+ T cell activation, inhibited tumor growth in both EO771 and B16F10 models and increased their survival rate (~43%), but also obviously reversed the T cell exhaustion (Tex) in tumor, meanwhile down regulated the mRNA expression of Tox and Nr4a, which are key regulators of Tex. Conclusion: cdG/Mix triggered ICD in various cancer cells and reversed the Tex systemically in tumor-burden mice, which would be a promising alternative strategy for cancer immunotherapy.


Membrane Proteins , Neoplasms , Animals , CD8-Positive T-Lymphocytes/metabolism , Cyclic GMP/analogs & derivatives , Cytokines , Immunotherapy/methods , Interferon-beta , Lipids , Membrane Proteins/metabolism , Mice , Neoplasms/pathology , RNA, Messenger
19.
J Bacteriol ; 204(10): e0018522, 2022 Oct 18.
Article En | MEDLINE | ID: mdl-36102640

A subpopulation of small-colony variants (SCVs) is a frequently observed feature of Pseudomonas aeruginosa isolates obtained from colonized cystic fibrosis lungs. Since most SCVs have until now been isolated from clinical samples, it remains unclear how widespread the ability of P. aeruginosa strains to develop this phenotype is and what the genetic mechanism(s) behind the emergence of SCVs are according to the origin of the isolate. In the present work, we investigated the ability of 22 P. aeruginosa isolates from various environmental origins to spontaneously adopt an SCV-like smaller alternative morphotype distinguishable from that of the ancestral parent strain under laboratory culture conditions. We found that all the P. aeruginosa strains tested could adopt an SCV phenotype, regardless of their origin. Whole-genome sequencing of SCVs obtained from clinical and environmental sources revealed single mutations exclusively in two distinct c-di-GMP signaling pathways, the Wsp and YfiBNR pathways. We conclude that the ability to switch to an SCV phenotype is a conserved feature of P. aeruginosa and results from the acquisition of a stable genetic mutation, regardless of the origin of the strain. IMPORTANCE P. aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because this bacterium is the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is considered related to the emergence of an alternative small-colony-variant (SCV) phenotype. By reporting the distribution of P. aeruginosa SCVs in various nonclinical environments and the involvement of c-di-GMP in SCV emergence from both clinical and environmental strains, this work contributes to understanding a conserved adaptation mechanism used by P. aeruginosa to adapt readily in all environments. Hindering this adaptation strategy could help control persistent infection by P. aeruginosa.


Cyclic GMP , Pseudomonas aeruginosa , Humans , Cystic Fibrosis/microbiology , Mutation , Phenotype , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas Infections/microbiology , Cyclic GMP/analogs & derivatives , Cyclic GMP/genetics
20.
Aging Cell ; 21(9): e13699, 2022 09.
Article En | MEDLINE | ID: mdl-36016499

Hypertension is common in elderly population. We designed to search comprehensively for genes that are chronologically shifted in their expressions and to define their contributions to vascular aging and hypertension. RNA sequencing was conducted to search for senescence-shifted transcripts in human umbilical vein endothelial cells (HUVECs). Small interfering RNA (siRNA), small-molecule drugs, CRISPR/Cas9 techniques, and imaging were used to determine genes' function and contributions to age-related phenotypes of the endothelial cell and blood vessel. Of 25 genes enriched in the term of "regulation of blood pressure," NPRA was changed most significantly. The decreased NPRA expression was replicated in aortas of aged mice. The knockdown of NPRA promoted HUVEC senescence and it decreased expressions of protein kinase cGMP-dependent 1 (PKG), sirtuin 1 (SIRT1), and endothelial nitric oxide synthase (eNOS). Suppression of NPRA also decreased the phosphorylation of AMP-activated protein kinase (AMPK) as well as the ratio of oxidized nicotinamide adenine dinucleotide (NAD+ )/reduced nicotinamide adenine dinucleotide (NADH) but increased the production of reactive oxygen species (ROS). 8-Br-cGMP (analog of cGMP), or AICAR (AMPK activator), counteracted the observed changes in HUVECs. The Npr1+/- mice presented an elevated systolic blood pressure and their vessels became insensitive to endothelial-dependent vasodilators. Further, vessels from Npr1+/- mice increased Cdkn1a but decreased eNos expressions. These phenotypes were rescued by intravenously administrated 8-Br-cGMP and viral overexpression of human PKG, respectively. In conclusion, we demonstrate NPRA/PKG/AMPK as a novel and critical signaling axis in the modulation of endothelial cell senescence, vascular aging, and hypertension.


AMP-Activated Protein Kinases , Hypertension , AMP-Activated Protein Kinases/metabolism , Aged , Aging , Animals , Blood Pressure , Cells, Cultured , Cyclic GMP/analogs & derivatives , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hypertension/genetics , Hypertension/metabolism , Mice , NAD/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , RNA, Small Interfering/metabolism , Thionucleotides
...